

Spectroscopic Analysis

p - Disubstituted benzene with non identical substituents :

For these compounds H_A and $H_{A/}$ are chemically equivalent as both of them are ortho w.r.t X and meta w.r.t Y. Thus the δ value is the same for both H_A and $H_{A/}$. The same is true for H_B and $H_{B/}$. However $_{/}$. H_A and $H_{A/}$ are magnetically non equivalent as they couple with H_B and $H_{B/}$ with unequal coupling constants. Similarly H_B and $H_{A/}$ are also magnetically non equivalent for their coupling with H_A and $H_{A/}$ with different coupling constants. This type of system is referred to as AA/BB/ system. Usually these aromatic protons appear as doublet due to ortho coupling with a J value of 7-9 Hz (para coupling is usually not seen). δ Values of the aromatic protons depend on the nature of the substituents X and Y.

8.3.1 4-Bromoacetanilide

$$H_{A'}$$

$$H_{B'}$$

$$H_{B}$$

$$H_{B}$$

Figure-8,3

	sala dagagan-byo Malaysassa		(E) (Claritical)
2.05	Singlet (3H)	−CH ₃	Deshielding by carbonyl causes downfield shift from the normal value of δ 0.9 ppm for methyl protons. Appearance as a singlet is attributed to the absence of any coupling partner.
7.44	Doublet (2H) (7.5 Hz)	H_A and $H_{A'}$	Mesomeric electron release by $-NHCOMe$ may cause slight shielding. The signal appears as a doublet due to ortho coupling with H_B and $H_{B'}$.
7.56	Doublet (2H) (7.5 Hz)	H_B and $H_{B'}$.	The signal appears as a doublet due to ortho coupling with H_A and $H_{A'}$.
10.05	Broad singlet (1H)	-NH	The signal appears as a singlet due to absence of any coupling partner. Nuclear quadruple broadening by nitrogen may be responsible for the appearance of broad singlet.

Figure-8.4

172 Chemistry in Laboratory

Vave noi(cmil)	Asignment	Explanatien
520	C-Br stretching	
820, 832	C-H def. (p-disubstitution)	and the second s
1540	N-H bending (amide II)	
1590, 1600	Aromatic C=C stretching	
1680	C=O stretching	Nitrogen lone pair is partly involved in resonance with the phenyl ring. So its conjugation with the carbonyl group diminishes increasing the carbonyl stretching from the normal value of amide.
2920	C-H stretching of —CH ₃	
3100	Aromatic C-H stretching	

8.3.2 4-Methyl acetanilide

$$\begin{array}{c|c} & \text{NHCOCH}_3 \\ H_{A'} & & H_A \\ H_{B'} & & H_B \end{array}$$

■ ¹H-NMR Spectrum:

Figure-8.5

editariicatediilit (*2:4000)	Muraelleas 2012	avereloigh	Projanation 1
. 2.10	Singlet (3H)	-СН ₃ (а)	Deshielding by carbonyl causes downfield shift from the normal value of δ 0.9 ppm for methyl protons. Appearance as a singlet is attributed to the absence of any coupling partner.
2.30	Singlet (3H)	-CH ₃ (b)	Deshielding by phenyl nucleus causes downfield shift from the normal value of δ 0.9 ppm for methyl protons. Appearance as a singlet is attributed to the absence of any coupling partner.
7.08	Doublet (2H) (8.2Hz)	H_B and $H_{B'}$.	Hyperconjugative electron release by $-Me$ may cause slight shielding. The signal appears as a doublet due to ortho coupling with H_A and $H_{A'}$.
7.54	Doublet (2H) (8.2 Hz)	H_A and $H_{A'}$	The signal appears as a doublet due to ortho coupling with H_{B} and $H_{B'}$.
9.81	Broad singlet (1H)	-NH	The signal appears as a singlet due to absence of any coupling partner. Nuclear quadruple broadening by nitrogen may be responsible for the appearance of broad singlet.

Figure-8.6

820	C-H def. (p-disubstitution)	
1543	N-H bending (amide II)	
1561, 1603	Aromatic C=C stretching	

■ ¹H-NMR Spectrum:

Figure-8.9

Chemical Shir : (8 gem)	Multiplianviateja	/ Celentarin (5)	Exploration 1
8.06	Doublet (2H) (9 Hz)	H_A and $H_{A'}$.	Deshielding is caused by the magnetic anisotropy of the carbonyl function. The signal appears as a doublet due to ortho coupling with H _B and H _B .
8.35	Doublet (2H) (9 Hz)	H _B and H _B	Deshielding is caused by the magnetic anisotropy of the nitro group to a greater extent than that of the carbonyl function. The signal appears as a doublet due to ortho coupling with H _A and H _A .
10.14	Singlet (1H)	-СНО	Magnetic anisotropy of the C=O unit causes high downfield shift. The signal appears as a singlet due to absence of any coupling partner.

Figure-8.10

West and the second	ASSIgningation	Explanation 7
820	C-H def. (p-disubstitution)	
1350, 1540	Symmetric and asymmetric stretching respectively of $-NO_2$.	
1610	Aromatic C=C stretching	
1710	C=O stretching	Mesomeric electron withdrawal by nitro group increases carbonyl stretching frequency.
2730, 2850	C—H stretching of —CHO	
2950	Aromatic C-H stretching	

8.3.5 4-Nitroaniline

$$H_{A'}$$
 $H_{B'}$
 H_{B}
 H_{B}

■ 1H-NMR Spectrum:

ologija Polikija	rottinionere de	Asjonaciąs Gyergij	Par Explanation 2
6.71	Singlet (2H)	-NH ₂	Nuclear quadruple broadening by nitrogen may be responsible for the appearance of broad singlet. The signal appears as a singlet due to absence of any coupling partner.
6.82	Doublet (2H) (9 Hz)	H_A and $H_{A'}$.	Mesomeric electron release by –amino function causes some shielding. The signal appears as a doublet due to ortho coupling with H_B and $H_{B'}$.
7.92	Doublet (2H) (9 Hz)	H_B and $H_{B'}$.	Deshielding is caused by the magnetic anisotropy of the nitro group. The signal appears as a doublet due to ortho coupling with H_A and $H_{A'}$.

Figure-8.12

Wave no (cm 1)	Assignation	i laxilimation,
820	C-H def. (p-disubstitution)	对于国际发展的基础的对于
1320, 1480	Symmetric and asymmetric stretching respectively of $-NO_2$.	
1600	Aromatic C=C stretching	
1630	N-H bending	
3100	Aromatic C—H stretching	1
3360, 3480	Symmetric and asymmetric N-H stretching respectively of -NH ₂	7 7 7

8.3.6 Methyl-4-hydroxybenzoate

■ ¹H-NMR Spectrum :

Chemical Shift (Vision)	Multiplicity (4.62)	Assignment 19 glossii	Explanation
3.85	Singlet (3H)	-ОСН ₃	Deshielding by $-$ COO unit causes downfield shift from the normal value of δ 0.9 ppm for methyl protons. Appearance as a singlet is attributed to the absence of any coupling partner.
6.81	Doublet (2H) (9 Hz)	H _B and H _B	Mesomeric electron release by -OH function causes some shielding. The signal appears as a doublet due to ortho coupling with H_A and $H_{A'}$.
7.77	Doublet (2H) (9 Hz)	H_A and $H_{A'}$	Deshielding is caused by the magnetic anisotropy of C=O of the methoxycarbonyl group The signal appears as a doublet due to ortho coupling with H _B and H _B .
9.68	Singlet (1H)	-ОН	The signal appears as a singlet due to absence of any coupling partner.

Figure-8.14

Philene (can)	Cappinal Carry	are from a second
850	C-H def. (p-disubstitution)	and the second of the second and a factor than the second and the
1235	C-O stretching	
1588, 1606	Aromatic C=C stretching	
1690	C=O stretching	Mesomeric electron release by -OH group di- minishes carbonyl stretching frequency
2924	· C-H stretching of, -CH ₃	
3030	Aromatic C-H stretching	
3300	O-H stretching	

8.3.7 Ethyl-4-amino benzoate

$$H_{A'}$$
 $H_{B'}$
 H_{B}
 H_{B}
 H_{B}

■ 1H-NMR Spectrum:

Figure-8.15

chemical Shift -(δ pem) = 3	Muliphaby (Hz)	Assistantian to	the second secon
1.3	Triplet (3H) (7 Hz)	-CH ₃	These protons are coupled by adjacent methylene protons.
4.3	Quartet (2H) (7 Hz)	-CH ₂	These protons are coupled by adjacent methyl protons.
5.48	Singlet (2H)	-NH ₂	Nuclear quadruple broadening by nitrogen may be responsible for the appearance of broad singlet. Appearance as a singlet is attributed to the absence of any coupling partner.
6.47	Doublet (2H) (9 Hz)	H_B and $H_{B'}$.	Mesomeric electron release by -amino function causes some shielding. The signal appears as a doublet due to ortho coupling with H _A and H _A .
7.63	Doublet (2H) (9 Hz)	H_A and $H_{A'}$	Deshielding is caused by the magnetic anisotropy of C=C of the ethoxycarbonyl group. The signal appears as a doublet due to ortho coupling with H _B and H _B .

Figure-8.16

ilia (egleanii il	Signation E. E. E.	45xplanation
846	C-H def. (p-disubstitution)	
1081	O-CH ₂ stretching	
1280	C-O stretching of ester	
1600	Aromatic C=C stretching	
1634	N—H bending	
1700	C=O stretching	Mesomeric electron release by amino group de- creases the stretching frequency of ester carbonyl from its normal value
2950	C-H stretchingof -CH ₂ CH ₃	Color Manual Special Special State (1997)
3045	Aromatic C-H stretching	
3330, 3422	Symmetric and asymmetric N-H stretching respectively of -NH ₂ .	

8.3.8 4-Methyl phenacyl bromide

$$H_{A'}$$
 $H_{B'}$
 H_{B}
 H_{B}
 H_{B}

■ 1H-NMR Spectrum:

Figure-8.17

	The Proposition of the Control of th	Astronomic process	
2.40	singlet	−CH ₃	Appearance as a singlet is attributed to the absence of any coupling partner.
4.43	singlet	-CH ₂	Deshielding is caused by carbonyl and Br. Appearance as a singlet is attributed to the absence of any coupling partner.
7.28	Doublet (8.2Hz)	H_A and $H_{A'}$	The signal appears as a doublet due to ortho coupling with H_{B} and $H_{\text{B}'}$.
7.88	Doublet (8.2 Hz)	H_B and $H_{B'}$.	Deshielding is caused by magnetic anisotropy of the carbonyl function. The signal appears as a doublet due to ortho coupling with H_A and $H_{A'}$.

The production is	to the dine minutes and	Explanation 4
550	C—Br stretching	
825	C-H def. (p-disubstitution)	
1600	Aromatic C=C stretching	
1693	C=O stretching	Inductive electron withdrawal by bromine increases the stretching frequency of conjugated carbonyl from its normal value
2975	(sp³) C-H stretching.	
3050	Aromatic C-H stretching	

8.3.9 4-Nitrocinnamic acid

$$H'_{A}$$
 H'_{A}
 H_{C}
 H'_{B}
 H'_{A}
 H_{C}
 H'_{B}
 H'_{A}
 H_{C}

■ 1H-NMR Spectrum:

			Scotlandish
6.56	Doublet (1H)	H_{D}	The signal appears as doublet due to coupling with HB. The trans coupling constant is very high.
7.59	Doublet (1H)	Н _С	Mesomeric electron withdrawal by the -COOH group causes high downfield shift. The signal appears as doublet due to coupling with HA. The trans coupling constant is very high.

·C	hemical Shift (& ppm)?	Multipuarty (1.42)	Assignment to proton	eduanalekā — Arab
	8.03	Doublet (2H) (9 Hz)	H_A and $H_{A'}$	The signal appears as a doublet due to ortho coupling with H_{B} and H_{B} .
	8.37	Doublet (2H) (9 Hz)	H_B and $H_{B'}$	Deshielding is caused by the magnetic anisotropy of the nitro group. The signal appears as a doublet due to ortho coupling with H_A and $H_{A'}$.
	12.05	Singlet (1H)	-СООН	Strong hydrogen bonding causes high downfield shift. The signal appears as a singlet due to absence of any coupling partner.

Figure-8.20

Wave number (cm.)	The sale with the sale of the	The state of the s
836	C-H def. (p-disubstitution)	
961	C-H def. (trans olefin)	
1209	C-O stretching	
1362, 1523	Symmetric and asymmetric stretching of -NO ₂	
1597, 1605	Aromatic C=C stretching	
1625	Olefinic C=C stretching	
1697	C=O stretching	Hydrogen bonding and conjugation with olefinic seg- ment lowers the carbonyl stretching frequency.
2600	O-H stretching.	Strong hydrogen bonding is responsible for lowering of O-H stretching frequency and broadening of the band
3077	Aromatic C-H stretching	, and a second of the band

o-Disubstituted benzene with non-identical substituents

$$H_A$$
 H_C
 H_C

For these compounds H_A , H_B , H_C and H_D' are chemically as well as magnetically non-equivalent. Ortho, meta and para coupling are possible for HA and HD whereas ortho and meta coupling are possible for H_B and H_C . So the splitting pattern of aromatic protons are highly complex and cannot be recognized unless subjected to hyperfine splitting. Theoretically doublet of doublet of doublet is the predicted splitting pattern for the aromatic protons. However in most of the cases they appear as complex multiplets.

8.3.10 Salicylaldehyde

■ 1H-NMR Spectrum:

Figure-8.21

Chemical Shift (δ ppm)	Multiplicity (L	Assignment to protein	L. JEXPlanation
6.96-7.03	Complex mul- tiplet (2H)	H _A and H _C	Mesomeric electron release by –OH function may cause some shielding. The signal for H_A appears as a doublet due to strong ortho coupling with H_B . The signal for H_C should appear as a triplet or doublet of doublet due to coupling with H_B and H_D . However the signals are close enough not to find out the discrete splitting pattern.
7.48-7.55	Complex mul- tiplet (2H)	$ m H_{B}$ and $ m H_{D}$	Mesomeric electron withdrawal by aldehydic carbonyl causes deshielding. Deshielding of H_D is also attributed to magnetic anisotropy of the carbonyl function. The signal for H_D appears as a doublet due to strong ortho coupling with H_C . The signal for H_B should appear as a triplet or doublet of doublet due to coupling with H_A and H_C . However the signals are close enough not to find out the discrete splitting pattern.
9.87	Singlet (1H)	-СНО	Magnetic anisotropy of the C=O unit causes high down-field shift. The signal appears as a singlet due to absence of any coupling partner.
11.1	Singlet (1H)	-ОН	Magnetic anisotropy of the C=O unit and strong intra- molecular hydrogen bonding cause very high downfield shift. The signal appears as a singlet due to absence of any coupling partner.

Figure-8.22

	Andrewski state of the state of	is golanation
767	C-H def. (o-disubstitution)	
1279	C-O stretching	
1596	Aromatic C=C stretching	
1665	C=O stretching	Strong intramolecular hydrogen bonding decreases the car- bonyl stretching frequency
2762, 2847	C-H stretching of -CHO	
3060	Aromatic C-H stretching.	
3190	O—H stretching	Strong intramolecular hydrogen bonding decreases the —OH stretching frequency and broadens the signal

8.3.11 2-Hydroxyacetophenone

$$H_{A} \xrightarrow{OH} COCH_{3}$$

$$H_{B} \xrightarrow{H_{C}} H_{D}$$

■ 1H-NMR Spectrum:

Figure-8.23

Chemical Shift (δ ppm)	Multiplicity: (J Hz)	Assignment to proton	to Explanation
2.5	Singlet (3H)	-COCH ₃	Deshielding by carbonyl causes downfield shift from the normal value of δ 0.9 ppm for methyl protons. Appearance ás a singlet is attributed to the absence of any coupling partner.
6.81-6.93	Complex multiplet (2H)	H _A and H _C	Mesomeric electron release by $-\mathrm{OH}$ function may cause some shielding. The signal for H_A should appear as a doublet due to ortho coupling with H_B and the signal for H_C should appear as a triplet due to ortho coupling with H_B and H_D . Here meta coupling is too weak to be seen.
7:41	Triplet (1H)	H _B	Mesomeric electron withdrawal by ketonic carbonyl causes deshielding. The signal appears as a triplet due to ortho coupling with $H_{\rm A}$ and $H_{\rm C}$. Meta coupling with $H_{\rm D}$ is too weak to be seen.
7.67	Doublet of doublet (1H)	H _D	Deshielding is caused by strong magnetic anisotropy of the carbonyl function. The signal appears as a doublet of doublet due to strong ortho coupling with $H_{\rm C}$ and weak meta coupling with $H_{\rm B}$.
12.4	Singlet (1H)	-ОН	Magnetic anisotropy of the C=O unit and strong intramolecular hydrogen bonding cause very high downfield shift. The signal appears as a singlet due to absence of any coupling partner.

Figure-8.24

Wave number (cm ')	Assignment 4.	and the state of t
770	C-H def. (o-disubstitution)	7.5
1245	C-O stretching	
1582, 1617	Aromatic C=C stretching	
1640	C=O stretching	Strong intramolecular hydrogen bonding decreases the carbonyl stretching frequency

Wave number (čm.)	Assignment	Explanation
3061	Aromatic C=H stretching	
3130	O—H stretching.	Strong intramolecular hydrogen bonding decreases the -OH stretching frequency and broadens the signal

8.3.12 2-Methoxybenzaldehyde

■ ¹H-NMR Spectrum :

Figure-8.25

Andorania;	Aprilianta a de la composición de la co	Aventleimen Gestionen	P Explanation
3.93	Singlet (3H)	−OCH ₃	Inductive electron withdrawal by methoxyl oxygen causes deshielding to lower the δ value than the normal value of 0.9 ppm for methyl protons. The signal appears as a singlet due to absence of any coupling partner.
6.99-7.03	Complex mul- tiplet (2H)	H _A and H _C	Mesomeric electron release by -OCH ₃ function may cause some shielding.
7.55	Triplet (1H)	H_{B}	Mesomeric electron withdrawal by aldehydic carbonyl causes deshielding. The signal appears as a triplet due to ortho coupling with H_A and H_C .
7.83	Complex mul- tiplet (1H)	H_{D}	Deshielding is caused by strong magnetic anisotropy of the carbonyl function. The signal appears as a complex multiplet due to ortho, meta and para coupling with $H_{\rm C}$, $H_{\rm B}$ and $H_{\rm A}$ respectively.

Chemical Shift - (& ppm)	Militarijanoviji el		Explanation
10.48	Singlet (1H)	-СНО	Magnetic anisotropy of the C=O unit causes high down field shift. The signal appears as a singlet due to absence of any coupling partner.

IR Spectrum:

Figure-8.26

Wave number (cm)	Asiphoeni -:	A STATE OF THE STA
760	C-H def. (a-disubstitution)	AND THE RESIDENCE OF THE PROPERTY OF THE PROPE
1247	C-O stretching	
1601	Aromatic C=C stretching	
1666, 1689	C=O stretching	When C=O and -OCH ₃ are on opposite sides, C=O stretching frequency is lowered. When C=O and -OCH ₃ are on the same side, C=O stretching frequency is raised as the carbon-oxygen double bond undergoes less charge separation to minimize dipole-dipole repulsion.
2761, 2846	C-H stretching of -CHO	
2946	C-H stretching of -CH ₃	
3010	Aromatic C-H stretching.	

8.3.13 2-Methoxyacetophenone

■ ¹H-NMR Spectrum:

व्यापन (१४) होता इ.स.च्यापन ११		Sky met	Ecilanation /
2.61	Singlet (3H)	−COCH ₃	Deshielding by carbonyl causes downfield shift from the normal value of δ 0.9 ppm for methyl protons. Appearance as a singlet is attributed to the absence of any coupling partner.
3.83	Singlet (3H)	-OCH ₃	Inductive electron withdrawal by methoxyl oxygen causes deshielding to lower the δ value than the normal value of 0.9 ppm for methyl protons. The signal appears as a singlet due to absence of any coupling partner.
6.97-7.00	Complex multiplet (2H)	H _A and H _C	Mesomeric electron release by $-OCH_3$ function may cause some shielding. The signal appears as a complex multiplet due to <i>ortho</i> and meta coupling.
7.50	Triplet (1H)	H _B	Mesomeric electron withdrawal by aldehydic carbonyl causes deshielding. The signal appears as a triplet due to ortho coupling with H_A and H_C .
7.73	Complex multiplet (1H)	H _D	Deshielding is caused by strong magnetic anisotropy of the carbonyl function. The signal appears as a complex multiplet due to ortho, meta and para coupling with H_C , H_B and H_A respectively.

venumberich	Assignment it _ = v	a Explanation and a series of the series of
760	C-H def. (o-disubstitution)	
1236	C-O stretching	
1593	Aromatic C=C stretching	
1675	C=O stretching	Mesomeric electro release by methoxy group decreases the carbonyl stretching frequency.
2970	C-H stretching of -CH ₃	in the state of th
3075	Aromatic C-H stretching.	

8.3.14 Salicylamide

■ ¹H-NMR Spectrum:

Figure-8.29

G	ម៉ូត្តាដែរនៅក្រ (សម្គាធារ			
	6.86	Triplet (1H)	H _C	Mesomeric electron release by $-OH$ function may cause some shielding. The signal appears as triplet due to ortho coupling with H_B and H_D .
	7.00	Doublet (1H)	H _A	Mesomeric electron release by $-OH$ function may cause some shielding. The signal appears as a doublet due to ortho coupling with H_B .

Chantelante Sont	3800001Halib. 1965	Version de la Company	in Opposition (
7.50-7.60	Complex mul- tiplet (2H)	$ m H_B$ and $ m H_D$	Mesomeric electron withdrawal and magnetic anisotropy of amide carbonyl cause deshielding. The signal appears as a complex multiplet due to ortho coupling of H_B with H_A and H_C and meta coupling with H_D . H_D experiences ortho coupling with H_C and meta coupling with H_B . Signals are too closely spaced to identify the splitting pattern clearly.
8.4	Broad singlet (2H)	-CONH ₂	The signal appears as a singlet due to absence of any coupling partner.
12.2	Singlet (1H)	-ОН	Magnetic anisotropy of the C=O unit and strong intra- molecular hydrogen bonding cause very high downfield shift. The signal appears as a singlet due to absence of any coupling partner.

Figure-8.30

idde gearing heeld land h	re-east comming the fail of	Explanation
750	C-H def. (o-disubstitution)	I Sumulativa ja ja sa kana kana kana kana kana kana kana
1250	C-O stretching	
1590, 1620	Aromatic C=C stretching	
1674	C=O stretching	Intramolecular hydrogen bonding decreases the carbonyl stretching frequency.
3061	Aromatic C=H stretching	
3200, 3400	Symmetric and asymmetric N-H stretching respectively	

m-Disubstituted benzene with non-identical substituents

$$H_A$$
 H_B
 H_C

For these compounds H_A , H_B , H_C and H_D are chemically as well as magnetically non-equivalent. Ortho and meta coupling are possible for H_A and H_C . Ortho and para coupling are possible for H_B . Meta and para coupling are possible for H_D . So the splitting pattern of aromatic protons are highly complex and cannot be recognized unless subjected to hyperfine splitting. Theoretically doublet of doublet of doublet and doublet of doublet are the predicted splitting pattern for H_A and H_C respectively. H_B and H_D are expected to appear as a doublet of doublet (neglecting the para coupling). However, in most of the cases they appear as complex multiplets.

8.3.15 3-Nitrobenzaldehyde

■ 1H-NMR Spectrum:

ChemicalShift (1)(6)(pm)			Solinium.
7.90	Triplet (1H)	H_{B}	Least deshielded among the aromatic protons as it is away from both the aldehyde and nitro functions. Appearance as a triplet is ascribed to strong ortho coupling with H_A and H_C .

Sitemestrine Organi	arginencaya (12)	Assishindiği iz gazleti	and the state of the exclanation of the state of the stat
8.27	Doublet of doublet (1H)	HA	Deshielding is caused by strong magnetic anisotropy of the carbonyl function. The signal appears as a doublet of doublet due to strong ortho coupling with $H_{\rm B}$ and weak meta coupling with $H_{\rm C}$.
8.42	Complex mul- tiplet (1H)	H _C	Deshielding is caused by strong magnetic anisotropy of the nitro function. Probably this effect is stronger than that caused by the carbonyl group. The signal appears as a complex multiplet due to ortho coupling with $H_{\rm B}$ and meta coupling with $H_{\rm A}$ and $H_{\rm D}$ respectively.
8.65	Triplet (1H)	H _D	Deshielding is caused by strong magnetic anisotropy of the nitro and carbonyl functions. The signal appears as a triplet due to weak meta coupling with H_A and H_C .
9.80	Singlet (1H)	СНО	Magnetic anisotropy of the C=O unit causes high down- field shift. The signal appears as a singlet due to absence of any coupling partner.

Figure-8.32

arriennest en ")	是包括政府(16)	Explaination 4.25
1360, 1530	Symmetric and asymmetric stretching of -NO ₂	
1610	Aromatic C=C stretching	
1710	C=O stretching	Conjugation with the phenyl ring decreases the carbonyl stretching frequency.
2760, 2864	C—H stretching of —CHO.	
3070	Aromatic C-H stretching	9 -, 198 8

8.3.16 Methyl-3-hydroxybenzoate

$$H_A$$
 H_B
 H_C
 H_C

H-NMR Spectrum:

Deshielding is caused by -COO unit. Appearance as a 3.89 COOCH₃ Singlet (3H) singlet is ascribed to absence of any coupling partner. The signal appears as a triplet due to strong ortho cou-7.16 Triplet (1H) H_{B} pling with HA and HC. Complex mul-The signal appears as a complex multiplet due to ortho 7.36 H_{C} tiplet (1H) coupling with HB and meta coupling with HA and HD. Complex mul-Deshielding is caused by strong magnetic anisotropy of 7.47-7.55 H_A and H_D tiplet (2H) the carbonyl function. Broad singlet The signal appears as a singlet due to absence of any 9.45 OH (1H)coupling partner.

Figure-8.34

enimberdin i	: sleinnen:	Explanation :
1108	O-CH ₃ stretching	
1242	C(O) — O stretching	
1538, 1600	Aromatic C=C stretching	
1696	C=O stretching	Conjugation with the phenyl ring decreases carbonyl stretching frequency.
2956	C—H stretching of —CH ₃ .	
3064	Aromatic C-H stretching	
3380	-OH stretching	

8.3.17 Ethyl-3-aminobenzoate

COOCH₂CH₃

$$H_A \qquad H_D$$

$$H_B \qquad NH_2$$

■ ¹H-NMR Spectrum :

Figure-8.35

Spreadled Shift 1250200	municity s		Explanation
1.30	Triplet (3H)	−CH ₃	Appearance as a triplet is ascribed to coupling with adjacent methylene protons
4.30	Quartet (2H)	-CH ₂	Deshielding is caused by -COO function. The signal appears as a quartet is ascribed to coupling with adjacent methyl protons
5.28	Broad singlet (2H)	-NH ₂	The signal appears as a singlet due to absence of any coupling partner. Nuclear quadruple broadening by nitrogen may be responsible for the appearance of broad singlet.

Alejotef Sk Jurije Over	it Nultiplieus	Austration P	The transfer of the confession allowers are the confession of the
6.85	Complex multiplet (1H)	H _C	The signal appears as a complex multiplet due to ortho coupling with H_B and meta coupling with H_A and H_D .
7.22	Triplet (1H)	H_{B}	The signal appears as a triplet due to ortho coupling with H_{Λ} and H_{C} .
7.34	Triplet (1H)	H _D	Deshielding is caused by strong magnetic anisotropy of the carbonyl function. The signal appears as a triplet due to weak meta coupling with H _A and H _C .
7.50	Complex multiplet (1H)	H_A	Deshielding is caused by strong magnetic anisotropy of the carbonyl function. The signal appears as complemultiplet due to strong ortho coupling with H _B and weak meta coupling with H _C and H _D .

Figure-8.36

ave mumber (cm.)		
1102	O-CH ₂ stretching	BEARING AND SHARE THE PROPERTY OF THE PARTY
1240	C(O) – O stretching	
1588, 1604	Aromatic C=C stretching	
1628	N=H stretching	
1708	C=O stretching	Conjugation with the phenyl ring decreases the carbonyl stretching frequency.
2980	C-H stretching of - CH ₂ CH ₃ .	requericy.
3060	Aromatic C-H stretching	
3374, 3461	Symmetric and asymmetric -NH ₂ stretching.	

8.3.18 3-Aminobenzoic acid

$$H_A$$
 H_D
 H_D
 H_C

■ ¹H-NMR Spectrum :

Figure-8.37

		in the second	Frahmillan
5.28	Broad singlet (2H)	-NH ₂	The signal appears as a singlet due to absence of any coupling partner. Nuclear quadruple broadening by nitrogen may be responsible for the appearance of broad singlet.
6.98	Complex mul- tiplet (1H)	H _C	The signal appears as a complex multiplet due to ortho coupling with H_B and meta coupling with H_A and H_D .
7.32	Triplet (1H)	H _B	The signal appears as a triplet due to ortho coupling with H_A and H_C .
7.50	Triplet (1H)	H _D	Deshielding is caused by strong magnetic anisotropy of the carbonyl function. The signal appears as a triplet due to weak meta coupling with H_{Λ} and H_{C} .
7.61	Complex multiplet (1H)	Н	Deshielding is caused by strong magnetic anisotropy of the carbonyl function. The signal appears as complex multiplet due to strong ortho coupling with H_{B} and weak meta coupling with H_{C} and H_{D} .
12.74	Broad singlet (1H)	соон	Strong hydrogen bonding causes high downfield shift. The signal appears as a singlet due to absence of any coupling partner

🖪 IR Spectrum :

Figure-8.38

Wave number (cm ⁻¹	Assignment	Explanation
1221	C(O) – O stretching	
1536, 1622	Aromatic C=C stretching	
1660	C=O stretching	Conjugation with phenyl ring and strong hydrogen bonding decreases the carbonyl stretching frequency.
2800	O-H stretching	Strong hydrogen bonding decreases the -OH stretching frequency and broadens the peak.
2996	Aromatic C—H stretching	
3250, 3450	Symmetric and asymmetric -NH ₂ stretching.	

8.3.19 3-Methylacetanilide

■ ¹H-NMR Spectrum :

Figure-8.39

Angmestellie E. Garrie	(A) (10) (4) § (4)	Assignment Copto con	Textilation
2.04	Singlet (3H)	NHCOCH ₃	The signal appears as a singlet due to absence of any coupling partner.
2.34	Singlet (3H)	C₃∸CH₃	The signal appears as a singlet due to absence of any coupling partner.
6.97	Complex mul- tiplet (1H)	H _C	The signal appears as a complex multiplet due to ortho coupling with $H_{\rm B}$ and meta coupling with $H_{\rm A}$ and $H_{\rm D}$.
7.31	Triplet (1H)	H _B	The signal appears as a triplet due to ortho coupling with $H_{\rm A}$ and $H_{\rm C}$.
7.42	Complex mul- tiplet (1H)	H _A	The signal appears as complex multiplet due to strong ortho coupling with $H_{\rm B}$ and weak meta coupling with $H_{\rm C}$ and $H_{\rm D}$.
7.54	Triplet (1H)	H_{D}	The signal appears as a triplet due to weak meta coupling with H_A and H_C .
10.2	Broad singlet (1H)	NH	The signal appears as a singlet due to absence of any coupling partner. Nuclear quadruple broadening by nitrogen may be responsible for the appearance of broad singlet.

■ IR Spectrum:

Figure-8.40

	Programment	
1546	N-H bending (amide II)	
1610	Aromatic C=C stretching	
1670	C=O stretching	Nitrogen lone pair is partly involved in resonance with the phenyl ring. So its conjugation with the carbonyl group diminishes increasing the carbonyl stretching from the normal value of amide.
2924	C-H stretching of -CH ₃	
3088	Aromatic C-H stretching	And Annual State of S
3290	N-H stretching	

8.3.20 3-Nitroanisole

$$H_A$$
 H_B
 H_C
 H_C

■ ¹H-NMR Spectrum:

		e enniter Militarion	根本的表面是一种的主义,但是一个人的主义,但是一个人的主义,但是一个人的主义,但是一个人的主义,但是一个人的主义,但是一个人的主义,但是一个人的主义,也是一个人 第一个人的主义,我们就是一个人的主义,我们就是一个人的主义,我们就是一个人的主义,我们就是一个人的主义,我们就是一个人的主义,我们就是一个人的主义,我们就是一个人
3.85	Singlet (3H)	OCH ₃	The signal appears as a singlet due to absence of any coupling partner.
7.33	Complex mul- tiplet (1H)	H _A	The signal appears as a complex multiplet due to ortho coupling with H_B and meta coupling with H_C and H_D .
7.45	Triplet (1H)	H _B	The signal appears as a triplet due to ortho coupling with H_A and H_C .
7.56	Triplet (1H)	H _D	Deshielding is caused by strong magnetic anisotropy of the nitro function. The signal appears as a triplet due to weak meta coupling with H_A and H_C .
7.89	Complex mul- tiplet (1H)	Н _С	Deshielding is caused by strong magnetic anisotropy of the nitro function. The signal appears as complex multiplet due to strong ortho coupling with H _B and weak meta coupling with H _A and H _D .

Figure-8.42

1067, 1267	C-O stretching	4	· .
1362, 1524	Symmetric and asymmetric stretching of -NO ₂	201	
1607	Aromatic C=C stretching	6	# # # # # # # # # # # # # # # # # # #
2943	C-H stretching of -CH ₃		
3015	Aromatic C—H stretching		35

m-Disubstituted benzene with identical substituents

8.3.21 1,3-Dinitrobenzene

$$H_A$$
 H_D
 H_C
 H_C

■ ¹H-NMR Spectrum :

Ghernical Shiji (Oppon)	000111-11-11-1		Many to the second second second content of the second second second second second second second second second
7.86	Triplet (1H)	H _B	The signal appears as a triplet due to ortho coupling with two H_A ,
8.43	Doublet of doublet (2H)	H _A	Deshielding is caused by strong magnetic anisotropy of the nitro function. The signal appears as a doublet of doublet due to strong ortho coupling with $H_{\rm B}$ and weak meta coupling with $H_{\rm D}$.
8.76	Triplet (1H)	H _D	Deshielding is caused by strong magnetic anisotropy of two nitro functions. The signal appears as triplet due to weak meta coupling with two H _A .

Figure-8.44

	Stolahation
Symmetric and asymmetric stretching of -NO ₂	
Aromatic C=C stretching	
Aromatic C-H stretching	

Benzene ring with more than two substituents

8.3.22 Vanillin

■ ¹H-NMR Spectrum:

Figure-8.45

S	Chemical: hift (δ ppm):	Multiplicity (LHz)	Assignment to proton	Explanation
	3.9	Singlet (3H)	OCH₃	The signal appears as a singlet due to absence of any coupling partner.
	6.7	Singlet (1H)	ОН	The signal appears as a singlet due to absence of any coupling partner.
	7.00	Doublet (1H)	H _A	The signal appears as a doublet due to ortho coupling with H_{B} .
	7.38-7.40	Complex multiplet (2H)	H _B and H _C	Proximity of the signals prevents observation of the splitting pattern clearly.
h	9.80	Singlet (1H)	СНО	Magnetic anisotropy of the C=O unit causes high downfield shift. The signal appears as a singlet due to absence of any coupling partner.

Figure-8.46

1150	C—O stretching	
1520, 1600	Aromatic C=C stretching	
1700	C=O stretching	
2725, 2810	C-H stretching of -CHO	
2930	C-H stretching of -CH ₃	
3010	Aromatic C-H stretching	
3550	O-H stretching	

8.3.23 5-Methyl-2-nitroanisole

■ ¹H-NMR Spectrum:

Wellstellers The signal appears as a singlet due to absence of any cou-2.34 Singlet (3H) C-CH₃ pling partner. The signal appears as a singlet due to absence of any cou-3.84 Singlet (3H) OCH, pling partner. Doublet of HA undergoes meta coupling with HB and HB undergoes 7.11-7.14 HA and HB doublet (2H) ortho coupling with H_C and meta coupling with H_A. Deshielding is caused by magnetic anisotropy of the nitro 8.12 Doublet (1H) H_{C} function. The signal appears as a doublet due to strong ortho coupling with H_B.

1120	O-CH ₃ stretching	* *
1270	Ar – O stretching	
1350, 1520	Symmetric and asymmetric stretching of -NO ₂	
1610	Aromatic C=C stretching	
2924	C−H stretching of −CH ₃	
3090	Aromatic C – H stretching	

8.3.24 3-Ethoxy-4-hydroxybenzaldehyde

H-NMR Spectrum:

	Transferencie Esta (Pajara		
1.32	Triplet (3H)	−CH ₃	The signal appears as a triplet due to coupling with adjacent methylene protons.
4.11	Quartet (2H)	-CH ₂	The signal appears as a quartet due to coupling with adjacent methyl protons.
7.20 -7.24	Complex mul- tiplet (2H)	$_{\rm H_B}$ and ${ m H_C}$	H_B experiences meta coupling with H_A . H_C experiences ortho coupling with H_A . Proximity of the signals prevents clear identification of the splitting pattern.
7.38	Doublet of doublet(1H)	H _A	Deshielding is caused by magnetic anisotropy of the carbonyl function. The signal appears as a doublet of doublet due to strong ortho coupling with H_C and weak meta coupling with H_B .

	tanggarage Pasta	્યાનું દિવસો છે. પ્રદેશ છે. છે. કે	Explanation
9.61	Singlet (1H)	СНО	Magnetic anisotropy of the C=O unit causes high downfield shift. The signal appears as a singlet due to absence of any coupling partner.
9.83	Broad singlet (1H)	-OH	The signal appears as a singlet due to absence of any coupling partner.

■ IR Spectrum.:

٧.

Figure-8.50

	The second of th	Explanation
1170	C-O stretching	Delica and the second s
1580, 1604	Aromatic C=C stretching	
1690	C=O stretching	
2738, 2830	C-H stretching of -CHO	Mary of the latest to the late
2930	C-H stretching of -CH ₂ CH ₃	
2980	Aromatic C-H stretching	
3360	O-H stretching	

8.3.25 2-Hydroxy-3-nitrobenzaldehyde

210

Chemistry in Laboratory

H-NMR Spectrum :

- Mr. 6400	Y 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3		Figure-8.51
Chemical Shift (à ppm	Multiplicity D.Hzi	ให้รอบกับอีก เรียบกับอีก	Caplanation
7.46	Triplet (1H)	. H _B	The signal appears as a triplet due to ortho coupling with H_A and H_C .
8.01	Doublet of doublet (1H)	H _A	Magnetic anisotropy of the C=O unit causes high downfield shift. The signal appears as doublet of doublet due to ortho coupling with H _B and meta coupling with H _C .
8.37	Doublet of doublet (1H)	H _C	Magnetic anisotropy of the nitro function causes high downfield shift. The effect is stronger than that of the carbonyl group. The signal appears as doublet of doublet due to ortho coupling with H_B and meta coupling with H_A .
10.26	Singlet (1H)	-СНО	Magnetic anisotropy of the C=O unitcauses high downfield shift. The signal appears as a singlet due to absence of any coupling partner.
14.89	Singlet (1H)	-ОН	Magnetic anisotropy of the C=O unit and strong intramolecular hydrogen bonding cause very high downfield shift. The signal appears as a singlet due to absence of any coupling partner.

IR Spectrum :

Wayaninendan	Absignment is	Exclanation
1380, 1518	Symmetric and asymmetric stretching of $-NO_2$	
1590	Aromatic C=C stretching	
1666	C=O stretching	Conjugation with phenyl group and strong intra- molecular hydrogen bonding with —OH func- tion decreases the carbonyl stretching frequency.
2740, 2864	C-H stretching of -CHO	
2930	Aromatic C-H stretching	
3100	O—H stretching	Strong intramolecular hydrogen bonding with –CHO and –NO ₂ groups drastically lowers the –OH stretching frequency

8.3.26 2,3-Dimethylbenzonitrile

$$H_{A} \xrightarrow{CN} CH_{3}$$

$$H_{B} \xrightarrow{CH_{3}}$$

■ ¹H-NMR Spectrum :

The Report	Shahadlare		Biglianation
2.34	Singlet (3H)	C ₃ -CH ₃	The signal appears as singlet due to absence of any coupling partner.
2.41	Singlet (3H)	C ₂ -CH ₃	Slightly more deshielded than C_3 — CH_3 as a result of electron withdrawal by — CN group. The signal appears as singlet due to absence of any coupling partner.

	Mülelpijeity 12 U (d.812)	Siligninitani Operevela	们也可以被制度的自身的形式,但是是这个人的,但是这个人的,这个人的人的人的,这个人的人的人,也不是一个人的人。
6.98	Triplet (1H)	H_B	The signal appears as a triplet due to ortho coupling with H_A and H_C .
7.45	Doublet of doublet (1H)	H _A	The signal appears as a doublet of doublet due to ortho coupling with $H_{\rm B}$ and meta coupling with $H_{\rm C}$.
7.53	Doublet of doublet (1H)	H _c	The signal appears as doublet of doublet due to ortho coupling with H_B and meta coupling with H_A .

IR Spectrum :

Figure-8.54

/ave number (cm 1)	Tastonia it		ANTENETICS .	
1590, 1600	Aromatic C=C stretching			
2250	CN stretching			
2900	C-H stretching of -CH ₃	Maria		
3040	Aromatic C—H stretching	1.00		/

Monosubstituted benzene derivative

8.3.27 trans - Cinnamic acid

■ ¹H-NMR Spectrum :

Figure-8.55

diamental	manuality.	acalgamen o Letafons	Balanation
6.48	Doublet (1H)	H _A	The signal appears as doublet due to coupling with HB. The trans coupling constant is very high.
7.42	Multiplet (3H)	Two meta and one para ring protons	The signal appears as a multiplet due to ortho and meta coupling.
7.60	Multiplet (2H)	Two ortho ring protons	The signal appears as a multiplet due to ortho and meta coupling.
7.82	Doublet (1H)	H _B	Mesomeric electron withdrawal by the $-\text{COOH}$ group causes high downfield shift. The signal appears as doublet due to coupling with H_A . The trans coupling constant is very high.
11.5	Broad singlet (1H)	СООН	Strong hydrogen bonding causes high downfield shift. The signal appears as a singlet due to absence of any coupling partner.

■ IR Spectrum :

Figure-8.56

Wave number (cm !)	Assignment	Excilanation
970	C-H def. (trans olefin)	and the state of t
1220	C-O stretching	
1590	Aromatic C=C stretching	
1620	Olefinic C=C stretching	
1680	C=O stretching	Hydrogen bonding and conjugation with olefinic segment lowers the carbonyl stretching frequency.
2900	O-H stretching.	Strong hydrogen bonding is responsible for lowering of O-H stretching frequency and broadening of the band
3050	Aromatic C-H stretching	

Some aliphatic compounds

8.3.28 Mesityl oxide

■ ¹H-NMR Spectrum:

Figure-8.57

		Asalgiunent to Platon	Explanation
1.89	Doublet (3H)	CH ₃ (d)	The signal appears as a doublet due to allylic coupling with $H_{\rm A}$.
2.14	Doublet (3H)	CH ₃ (e)	The signal appears as a doublet due to allylic coupling with H_A .
2.16	Singlet (3H)	CH₃(b)	The signal appears as singlet due to absence of any coupling partner.
6.09	Broad singlet (1H)	$H_{\mathbf{A}}$	The signal should appear as a multiplet due to allylic coupling with $CH_3(d)$ and $CH_3(e)$. However, these long-range couplings are so weak that the actual splitting pattern is not seen.

■ IR Spectrum :

Figure-8.58

		- Skelanetton
1360, 1450	Symmetric and asymmetric CMe ₂ Stretching	
1620	C=C stretching	
1690	C=C stretching	Conjugation with C=C slightly lowers the car- bonyl stretching frequency
2900	C(sp³) – H stretching	
3000	C=C-H stretching	

8.3.29 Diethyl fumarate

$$H_3$$
CH₂COOCH₂CH₃

■ 1H-NMR Spectrum:

	Morphic (v.		
1.21	Triplet (6H)	−CH ₃	The signal appears as triplet due to coupling with adjacent methylene protons.
4.06	Quartet (4H)	-CH ₂	The signal appears as quartet due to coupling with adjacent methyl protons.
6.31	Singlet (2H)	H _A	The signal appears as a singlet as two H _A are homotopic and so chemically and magnetically equivalent.

IR Spectrum :

even in beream	Assignment X	Explanation
985	C-H def. (trans olefin)	Visited and Proceedings and anothers,
1220	C-O stretching	
1650	C=C stretching	
1725	C=O stretching	
2910	C(sp ³) – H stretching	
2990	C=C-H stretching	

8.3.30 Pent-1-yn-3-ol

■ ¹H-NMR Spectrum :

Figure-8.61

	oversjelen. Svensjelen.		e Explanation
0.89	Triplet (3H)	-СH ₃	The signal appears as triplet due to coupling with adjacent methylene protons.
1:65	Quartet (4H)	−CH ₂	The signal appears as quintet due to coupling with adjacent methyl and methine protons. Coupling constants with methyl and methine protons are almost the same which make the doublet of quartet coalesce into a quintet.
3.61	Doublet (1H)	Acetylenic proton	The signal appears as a doublet due to long range coupling with methine proton. The coupling constant is low.
4.54	Doublet of triplet (1H)	СНОН	The signal appears as a doublet of triplet (dt) due to coupling with adjacent methyl protons (with high coupling constant) and long-range coupling with methine proton (with low coupling constant).
5.19	Broad singlet (1H)	ОН	The signal appears as a singlet due to absence of any coupling partner.

Chemistry In Laboratory (H)-16

IR Spectrum :

Figure-8.62

629	C(sp)—H def.	•
1100	C-O stretching	
2110	C(sp) - C(sp) stretching	
2950	C(sp³)-H stretching	
3300	C(sp)—H stretching	•
3400	O—H stretching	

Question for viva-voce

1. Why the aldehydic C-H stretching absorption appears as a doublet and at a lower wave number than an alkenyl C-H?

Hint: Interaction between n orbital on carbonyl oxygen and σ of *C-H decreases the force constant of aldehydic C-H. Appearance as a doublet is ascribed to interaction between fundamental C-H stretching and overtone of C-H bending.

2. Why hydrogen bonded O-H appears as broad band?

Hint: Due to thermal motion of molecules strengths of all the hydrogen bonds in a molecular assembly are not identical. So hydrogen bonding diminishes the force constants in such a way that a large number of O-H bonds with closely spaced force constants are created.

3. How can you distinguish between 4-methyl benzamide and 4-amino acetophenone by IR spectroscopy?

Hint: By the presence and absence of the characteristic amide bands. Comparison of carbonyl stretching frequency is not safe due to lowering of force constant of C=O in 4-amino acetophenone through mesomeric electron release by the amino group.

4. Two C=O stretching absorptions are observed in methyl-2-chloro benzoate. Explain.

Hint: In rotamer B C=O bond acquires less single bond character to minimise dipole-dipole repulsion with C-Cl. So force constant of C=O becomes greater for B than for A which is responsible for the higher carbonyl stretching displayed by B than by A.

5. 2-Hydroxy-3-nitro acetophenone displays two carbonyl stretching frequencies at 1692 and 1658 cm-1. Explain.

Hint: The hydroxyl function may separately be engaged in intramolecular hydrogen bonding with — NO₂ and C=O. Therefore signals for nonbonded C=O (1692 cm⁻¹) and bonded C=O (1658 cm⁻¹) are observed.

6. How many PMR signals do you expect for the following compounds?

(i) R-2-bromobutane (ii) Propene (iii) p-dichlorobenzene

Hint: (i) 5 (ii) 4 (iii) 1

7. What type of protons undergo D2O exchange?

Hint: Labile protons like -OH, -COOH, -SH, -CONH-, active methylene and methine etc.

8. Which nuclei are NMR active?

Hint: Nuclei with spin quantum number greater than zero are NMR active.

9. Which compound is used as internal standard during D2O exchange?

Hint: Sodium salt of 3-(trimethyl silyl)-propanesulfonic acid as TMS is insoluble in water or in D2O.

10. Between enantiotopic and diastereotopic protons which can be distinguished by PMR spectroscopy?

Hint: Diastereotopic protons as PMR is an achiral probe.

■ References

- Organic Spectroscopy (3rd edition), William Kemp, ELBS.
- 2. Spectroscopic Identification of Organic Compounds (6th edition), Robert M. Silverstein and Francis X. Webster, Wiley India.
- 3. Introduction to Spectroscopy(5th edition), Donald L Pavia, Gary M Lampman, George S. Kriz, James R. Vyvyan, Cengage Learning.
- 4. Application of Absorption Spectroscopy of Organic Compounds, John R. Dyer, Prentice Hall of India.
- 5. Magnetic Anisotropy of The Nitro Group by NMR, I Yamaguchi, Mol. Phys. 1963, 6, 103.
- 6. Gitendra C. Paul and Joseph J. Gajewski., J. Org. Chem, 1992, 57, 1970.