B.A/B.Sc 3rd Semester (General) Examination, 2020 (CBCS) Subject: Mathematics Course: BMG3SEC11 (Logic and set)

Time	: 2 Ho	urs Full Marks: 40	Full Marks: 40	
		The figures in the margin indicate full marks.		
	Can	didates are required to write their answers in their own words as far as practicable.		
		[Notation and Symbols have then usual meaning]		
Ansv	Answer any eight questions: 8 × 5			
1.		Prove that $A - (B \cup C) = (A - B) \cap (A - C)$ for any three subsets A, B, C of a universal set.	[5]	
2.		In a class of 50 students, 15 read Physics, 20 read Chemistry and 20 read Mathematics, 3 read Physics and Chemistry, 6 read Chemistry and Mathematics and 5 read Physics and Mathematics, 7 read none of these subjects. How many students read all the subjects?	[5]	
3.	(i)	Given $A \cap B = A \cap C$, does it imply $B = C$? Justify your answer.	[2]	
	(ii)	Define a relation ρ on \mathbb{R} by $a \rho b$ if and only if $ab \ge 0$. Is ρ an equivalence relation? Justify your answer.	[3]	
4.		A relation ρ is defined on \mathbb{Z} as $a \rho b$ holds if and only if $a^2 + b^2$ is divisible by 2, where $a, b \in \mathbb{Z}$. Prove that ρ is an equivalence relation.	[5]	
5.		If A, B, C are three non-empty sets then prove that	[5]	
		$A \times (B \cap C) = (A \times B) \cap (A \times C).$		
6.		Let p and q be the propositions as p: The election is decided	[1+2+2]	
		<i>a</i> : The votes have been counted		
		Express each of the propositions as an English sentence		
		(i) $\sim q$ (ii) $p \wedge q$ (iii) $p \rightarrow q$.		
7.	(i)	Is $(\sim p \rightarrow p) \rightarrow p$ a tautology? Justify your answer.	[3]	
	(ii)	If p is the statement 'it is hot today' and q is the statement 'she is coming' then	[2]	
		give a simple verbal sentence which describes $p \rightarrow \sim q$.		
8.		Construct the truth table for $(\sim p \land q) \lor p$.	[5]	
9.		Prove that the intersection of two equivalence relations is again an equivalence	[5]	
		relation.		
10.		Symbolise the following:	[2+3]	
		(i) All men are mortal.		
		(ii) Some men are clever.		

B.A/B.Sc 3rd Semester (General) Examination, 2020 (CBCS) Subject: Mathematics Course: BMG3SEC12 (Analytical Geometry)

Time: 2 Hours

Full Marks: 40

The figures in the margin indicate full marks. Candidates are required to write their answers in their own words as far as practicable. [Notation and Symbols have their usual meaning]

Answer any eight questions: $8 \times 5 = 40$				
1.		Identify the conic $y^2 + 2x - 4y + 3 = 0$ and find its vertex, focus, directrix. Also	[5]	
		draw a rough sketch of it.		
2.		Find the centre, eccentricity and foci of the conic $2x^2 + 3y^2 - 4x + 5y + 4 = 0$ and		
		draw a rough sketch of it.	[5]	
3.	(i)	Find the equation of the parabola with focus (5,3) and directrix		
		3x + 2y + 7 = 0.	[3]	
	(ii)	State the reflection property of parabola.	[2]	
4.		Find the equation of the hyperbola, referred to its axes as axes of coordinates,	[5]	
		whose conjugate axis is 5 and the distance between the foci is 13.		
5.		Discuss the nature of the conic represented by	[5]	
		$4x^2 - 4xy + y^2 - 8x - 6y + 5 = 0.$		
6.		Reduce the equation $4x^2 + 4xy + y^2 - 4x - 2y + a = 0$ to the canonical form and	[5]	
		determine the type of the conic represented by it for different values of a.		
7.		Find the equation of the sphere for which the circle $x^2 + y^2 + z^2 + 2x - 4y + 5 = 0$,	[5]	
		x - 2y + 3z + 1 = 0 is a great circle.		
8.		A sphere of radius r passes through the origin and meets the axes in A , B , C .	[5]	
		Show that the locus of the centroid of the triangle ABC in the sphere is		
		$9(x^2 + y^2 + z^2) = 4r^2.$		
9.		Find the equation of the right circular cylinder of radius 3, whose axis is the	[5]	
		straight line $\frac{x}{1} = \frac{y}{-2} = \frac{z}{2}$.		
10.		Obtain the equation of the cylinder whose generators intersect the ellipse	[5]	
		$9x^2 + 3y^2 = 1$, $z = 0$ and are parallel to the straight line with direction ratios	r. 1	
		1, -1, 1.		

B.A/B.Sc. 3rd Semester (General) Examination, 2020 (CBCS) Subject: Mathematics Course: BMG3SEC13 (Integral Calculus)

Time: 2 Hours

Full Marks: 40

The figures in the margin indicate full marks.

Candidates are required to write their answers in their own words as far as practicable. [Notation and Symbols have their usual meaning]

Answer any eight questions. $8 \times 5 = 4$			8×5 = 40
1.		If $\int_0^x f(t)dt = x + \int_x^1 t f(t)dt$ then find the value of f(1).	[5]
2.	(i)	State the fundamental theorem of calculus.	[2]
	(ii)	Evaluate $\int_{-2}^{2} \left 1 - x^2 \right dx$	[3]
3.	(i)	Evaluate $\int \frac{x}{x^4-1} dx$.	[3]
	(ii)	Evaluate $\int (1+x)\log(1+x)dx$.	[2]
4.		Find the reduction formula for $\int (x^2 + a^2)^n dx$.	[5]
5.		Deduce the reduction formula for $\int_0^{\pi/2} \cos^n x dx$.	[3+2]
		Hence find $\int_0^{\pi} x \cos^4 x dx$.	
6.		Evaluate the integral $\int_0^1 \int_0^{1-x} \int_0^{1-x-y} \frac{dxdydz}{(1+x+y+z)^3}.$	[5]
7.		Evaluate $\iiint_V (x^2 + y^2 + z^2) dx dy dz$ where V is the volume of the cube bounded by	the co- [5]
		ordinate planes and the planes $x = a$, $y = a$, $z = a$.	
8.		Find the length of the arc of the curve $x = a \sin 2\theta (1 + \cos 2\theta)$, $y = a \cos 2\theta (1 - \cos 2\theta)$ from	m the [5]
		origin to any point.	
9.		Find the area of the hypo-cycloid $(x / a)^{2/3} + (y / b)^{2/3} = 1$.	[5]
10.		Find the volume of the sphere and the surface area generated by the revolution	n of the [2+3]
		circle $x^2 + y^2 = a^2$ about the x-axis.	