B.A/B.Sc 6th Semester (General) Examination, 2020 (CBCS) Subject: Mathematics

Course: BMG6SEC41 (Boolean Algebra)

Time: 2 Hours

Full Marks: 40

The figures in the margin indicate full marks. Candidates are required to write their answers in their own words as far as practicable. [Notation and Symbols have their usual meaning]

Ans	Answer any eight questions from the following: 8×5=40						
1.	Using Karnaugh map minimize the following Boolean function						
	$F(A,B,C,D) = \sum m(0,1,3,5,7,8,9,11,13,15)$	5					
2.	Prove that a complete \wedge -semi lattice is a complete lattice if and only if it has a top element.	5					
3.	Prove that an order (L, \leq) is a Lattice if sup H and inf H exist for every finite non-empty sul H of L.	ıbset 5					
4.	State and prove "The Isomorphism Theorem for Modular Lattices".	5					
5.	A committee of three persons A, B, C decides proposals by a majority of votes. A has a vo	oting					
	weight 3, B has a voting weight 2 and C has a voting weight 1. Design a simple circuit so	that					
	light will glow when a majority of vote is cast in favour of the proposal.	5					
6.	Prove that a set A is totally ordered iff every non empty finite subset of A has a least element.	5					
7.	Let $S = \{1, 2, 3, \dots 100\}$. Let $x \le y$ means x is a divisor of y, then prove that (S, \le) is a poset. Figure 1.1.	nd					
	the maximal and minimal elements of S.	2+3					
8.	Let S be the set of all divisors of n, where n is a natural number, a relation \leq is defined on S such	1 that					
	$x \le y$ means x is a divisor of y. Prove that (S, \le) is a poset and also find $glb(x, y)$ and $lub(x, y)$	/).					
		2+3					
9.	Prove that in a Boolean Algebra B the following results are hold. (i) $a + a = a$ (ii) $a + 1 = 1$	5					
10.	Write the principle of duality in Boolean Algebra. Using this principle prove that $(a + b)^{\cdot} = a^{\cdot} \cdot b^{\cdot}$.	5					

B.A/B.Sc 6th Semester (General) Examination, 2020 (CBCS) **Subject: Mathematics**

Course: BMG6SEC42 (Transportation and Game Theory)

Time: 2 Hours

The figures in the margin indicate full marks. Candidates are required to write their answers in their own words as far as practicable. [Notation and Symbols have their usual meaning]

Answer any eight questions from the following:

- 1. Prove that the number of basic variables in a balanced transportation problem with *m* sources/ origins and *n* destinations $(m, n \ge 2)$ is at most m + n - 1. 5
- 2. Determine an initial B.F.S. of the following transportation problem by north west corner method.

	D_1	D_2	D_3	D_4	a _i
O_1	4	6	9	5	16
02	2	6	4	1	12
03	5	7	2	9	15
b_j	12	14	9	8	43

3. Find the initial B.F.S. of the following balanced transportation problem with the help of VAM method.

	D_1	D_2	D_3	D_4	a_i
01	15	28	13	21	18
02	22	15	19	14	14
03	16	12	14	31	13
O_4	24	23	15	30	20
b_j	16	15	10	24	65

- 4. Prove that in an assignment problem, if a constant is added or subtracted to every element of any row (or column) of the cost matrix $\left[c_{ij}
 ight]$, then an assignment that minimizes the total cost on one matrix also minimizes the total cost on the other matrix.
- 5. In a two-person zero sum game, each player simultaneously shows either one or two fingers. If the number of fingers match then the player A wins a rupee from the player B. Otherwise A pays a rupee to B. Find the pay-off matrix and solve the game. 5

8×5=40

Full Marks: 40

5

5

6. Find the optimal assignment along with total profit from the following assignment problem. 5

	D_1	D_2	D_3	D_4	D_5
01	2	4	3	5	4
02	7	4	6	8	4
03	2	9	8	10	4
O_4	8	6	12	7	4
05	2	8	5	8	8

7. Solve the following rectangular game graphically:

٩	Player B				
/er /	1	0	4	-1	
Play	-1	1	-2	5	

- 8. Define (a) Saddle point, (b) Pure and mixed strategies.
- 9. Using dominance property, reduce the following pay-off matrix to 2×2 game and hence find the optimal strategies and the value of the game. 5

	Player B			
Player A	1	7	3	4
	5	6	4	5
	7	2	0	3

10. Find the optimal solution of the following transportation problem if the Initial basic feasible solution is given by $x_{11} = 5, x_{14} = 2, x_{23} = 7, x_{24} = 2, x_{32} = 8, x_{34} = 10$. 5 5

	D_1	D ₂	D ₃	D ₄	Supply
01	19	30	50	10	7
O ₂	70	30	40	60	9
O ₃	40	8	70	20	18
Demand	5	8	7	14	34

5

5

B.A/B.Sc 6th Semester (General) Examination, 2020 (CBCS) **Subject: Mathematics**

Course: BMG6SEC43 (Graph Theory)

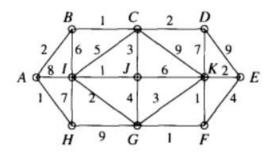
Time: 2 Hours

Full Marks: 40

The figures in the margin indicate full marks. Candidates are required to write their answers in their own words as far as practicable. [Notation and Symbols have their usual meaning]

Ans	swer any eight questions from the following:	8×5=40
1.	Prove that the number of odd vertices in a pseudograph is even.	5
2.	If G is a simple graph with at least two vertices, prove that G must contain two	or more
	vertices of the same degree.	5
3.	A simple graph that is isomorphic to its complement is self-complementary. Prov	e that if
	a graph G is self-complementary, then G has $4k$ or $4k+1$ vertices, where k is an	integer.
	Further find all self-complementary graph with 5 vertices.	4+1
4.	Let G be a graph and let H be a subgraph of G. Assume that H contains at lea	st three
	vertices. Is it possible for G to be a complete graph and for H to be bipartite? Expla	ain your
	answer.	5
5.	Show that a pseudograph with at least two vertices is Eulerian if and only if it is co	nnected
	and every vertex is even.	5
6.	Let a graph G has $n \ge 3$ vertices and every vertex have degree at least $\frac{n}{2}$. Show the	hat G is
	Hamiltonian.	5
7.	Find a graph whose adjacency matrix is $A = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}$.	5
	$\begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$	

Apply Dijkstra's algorithm to find the length of the shortest path from A to every other vertex in the figure. Also find the shortest path from A to E.
 4+1



- 9. (a) Show that if G is a bipartite graph, then each cycle of g has even length.
 (b) Show that if G is a graph in which the degree of each vertex is at least 2, then G contains a cycle.
- 10. Suppose $v_1, v_2, ..., v_n$ be a set of *n* vertices in a graph such that v_i and v_{i+1} are adjacent for $1 \le i \le n-1$ and, v_n and v_1 are also adjacent. Prove that for any $n \ge 4$, two isomorphic graphs must contain the same number of n-cycles. 5