B.A/B.Sc 3rd Semester (Honours) Examination, 2020 (CBCS) Subject: Mathematics Course: BMH3SEC11 (Logic & Sets)

Time: 2 Hours

Full Marks: 40

 $8 \times 5 = 40$

The figures in the margin indicate full marks. Candidates are required to write their answers in their own words as far as practicable. [Notation and Symbols have their usual meaning]

Answer any eight questions:

1.		Define a difference and symmetric difference of two sets. Which one of these two operations is commutative? Support your answer with proper justification.	[2+3]
2.	(i)	For any two sets A and B, show that $A \cup B = B$ and $A \cap B = A$ if and only if $A \subseteq B$.	[2]
	(ii)	Show that for three sets A, B, C, $A \cap (B \cup C) = (A \cap B) \cup C$ if and only if $C \subseteq A$.	[3]
3.	(i)	Can you define an equivalence relation on a set? Give an example with proper instification	[3]
	(ii)	Let X be the set of all straight lines in a plane. Define a relation ρ on X by for two	[2]
		lines $l, m, l \rho m$ if and only if l and m are parallel. Check that whether it is an equivalence relation on X.	
4.		Suppose that P be a partition on a non-empty set X . Can you define an equivalence relation on X for which the equivalence classes will coincide with the partition blocks?	[5]
5.		For $(a, b), (c, d) \in \mathbb{Z}^+ \times \mathbb{Z}^+$, define $(a, b) \sim (c, d)$ if and only if $a + d = b + c$.	[3+2]
		Check whether it is an equivalence relation or not. If yes then find out the equivalence classes.	
6.	(i)	Show that every partition of a set induces an equivalence relation on that set.	[3]
	(ii)	Give an example of a relation which is reflexive and symmetric but not transitive.	[2]
7.	(i)	Write down the truth table for the statement form $p \rightarrow (q \lor r)$, where p, q, r are statement variables.	[3]
	(ii)	Show that the statement form $((\sim p) \lor q)$ will have the same truth function as that	
		of $(p \rightarrow q)$.	[2]
8.		Define a tautology. Which of the following statement forms are tautologies?	[1+2+2]
	(i)	$(p \rightarrow (q \rightarrow r))$	
	(ii)	$(((\sim p) \rightarrow q) \rightarrow (p \rightarrow (\sim q)))$	
9.		What do you mean by logically equivalent statement forms? Show that the	[1+4]
		statement forms $((p \lor q) \land r), ((p \land r) \lor (q \land r)))$ are logically equivalent.	
10.		How to symbolize the Universal Quantifier and Existential Quantifier?	[1+2+2]
		Symbolize the following in terms of two quantifiers simultaneously :	
		(a) Some real numbers are rational.	

(b) Every integer has a prime factor.

B.A/B.Sc 3rd Semester (Honours) Examination, 2020 (CBCS) Subject: Mathematics

Course: BMH3SECI2 (Computer graphics)

Time: 2 Hours

Time: 2 Hours

Full Marks: 40

The figures in the margin indicate full marks. Candidates are required to write their answers in their own words as far as practicable. [Notation and Symbols have their usual meaning]

Answer any eight questions:			
1.	Discuss RGB true color system in brief.		[5]
2.	Discuss Raster scan in brief.		[5]
3.	Briefly describe the working principle of dot matrix printer.		[5]
4.	Write down the DDA line drawing algorithm.		[5]
5.	Develop the Bresenham's line drawing algorithm.		[5]
6.	Discuss the midpoint circle drawing algorithm.		[5]
7.	Briefly discuss flood fill algorithm.		[5]
8.	Discuss linear translation of a rigid body in brief.		[5]
9.	Briefly discuss homogeneous coordinate system.		[5]
10.	Write a short note on line clipping.		[5]

B.A/B.Sc 3rd Semester (Honours) Examination, 2020 (CBCS) Subject: Mathematics

Course: BMH3SEC13 (Object Oriented Programming in C++)

Full Marks: 40

The figures in the margin indicate full marks.

Candidates are required to write their answers in their own words as far as practicable. [Notation and Symbols have their usual meaning]

Ans	Answer any eight questions: $8 \times 5 =$		
1.	(i)	Explain the benefits of object-oriented approach.	[2]
	(ii)	What are objects and classes? Give examples.	[3]
2.	(i)	How do the structures in C and C ++ differ?	[3]
	(ii)	What are global variables? Give example.	[2]
3.		What are different types of errors? Explain with examples.	[5]
4.	(i)	What is the significance of logical operators?	[2]
	(ii)	What are the uses of logical '&&' and ' ' operators?	[3]
5.		Explain <i>else-if</i> and <i>switch</i> structures with examples.	[5]
6.		What is a friend function? What are the merits and demerits of using frie	nd [2+3]
		functions?	

7.		Write a program to find the reverse of an integer 3456 using a function.	[5]
8.	(i)	Write the general form of an operator overloading function.	[3]
	(ii)	Write the syntaxes of the overloading functions for insertion operator '>>'	[2]
		and extraction operator '<<'.	
9.		Write a class template by name vector and find the smallest of the elements	
		in the vector with user defined size.	[5]
10.		What is the need for namespaces? Explain with example.	[5]