B.A/B.Sc. 3rd Semester (Honours) Examination, 2021 (CBCS) Subject: Mathematics Course: BMH3CC06 (Honours) (Group Theory-I)

Time: 3 Hours

Full Marks: 60

The figures in the margin indicate full marks. Candidates are required to write their answers in their own words as far as practicable. [Notation and Symbols have their usual meaning]

1.	Answ	er any six questions: $6 \times 5 = 30$	
(a)		Show that if a group G has finite number of subgroups, then G is finite.	[5]
(b)		Show by an example that if H is a normal subgroup of G and K is a normal subgroup	[5]
		of H then K may not be a normal subgroup of G.	
(c)		If G has only one element x of order n, then show that x is in $Z(G)$, where $Z(G)$ is the	[5]
		center of the group G.	
(d)		If x is an element of group G of finite order and k is any non zero integer then show	[5]
		that $O(x) = O(x^k)$ if and only if k and $O(x)$ are relatively prime where $O(x)$ denotes the	
		order of x.	
(e)		Find the all 3-cycles in S_4	[5]
(f)		Let $n,m \ge 2$. Find all the homomorphism from \mathbb{Z}_n to \mathbb{Z}_m .	[5]
(g)		Let G be an abelian group of odd order and $f: G \to G$ be defined by $f(x) = x^2$	[5]
		for all G. Show that f is an isomorphism.	
(h)		Find all homomorphism from \mathbb{Q} to \mathbb{Z} .	[5]
2		200	
2. Answer any three questions: $10 \times 3 = 30$			[6]
(a)	(i)	Let k be an integer and $f_k : \mathbb{R}^* \to \mathbb{R}^*$ be the map $f(x) = x^k$ for all x in \mathbb{R}^* . Is the map	[5]
		f_k an isomorphism? Justify your answer.	[5]
	(ii)	Let G be a group and $x \neq e$ be an element in G. Then prove that there exists a unique homomorphism for \mathbb{Z} , C such that $f(1) = x$ and also prove that $\ker f = d/\mathbb{Z}$ for some	[5]
		homomorphism $f: \mathbb{Z} \to G$ such that $f(1) = x$. and also prove that kerf= $d \mathbb{Z}$ for some $d \neq 0$ iff $0(x)=d$.	
(b)	(i)		[5]
(0)	(1)	Let $G := \{A \in GL(2, \mathbb{R}) : A = \begin{pmatrix} a & -b \\ b & a \end{pmatrix}\}$. Show that \mathbb{C}^* is isomorphic to the group G.	[3]
	(ii)	Let $G = \mathbb{R}^2$ and $H = \{(x, 0) \in G : x \in \mathbb{R}\}$. Show that $\frac{G}{H}$ is isomorphic to $(\mathbb{R}, +)$.	[5]
(c)	(i)	Let <i>n</i> be a positive integer and N= $<$ <i>n</i> $>$ be the cyclic subgroup of the additive group \mathbb{Z}	[5]
		of integers. Show that $0(\frac{\mathbb{Z}}{N})=n$.	
	(ii)	If p is the smallest prime factor of the order of finite group G, prove that any subgroup	[5]

- (ii) If p is the smallest prime factor of the order of finite group G, prove that any subgroup [5] of index p is normal.
- (d) (i) Let $G = S_3$ and $H = A_3$. Show that G/H is isomorphic to $\{1, -1\}$. [5]

(ii)	Let G be a group with at least two elements such that G has no subgroup other than	[5]	
	$\{e\}$ and itself. Then prove that G is a cyclic group of prime order.		

- (e) (i) Let G be a finite group. Then prove that every element in G is of finite order. Is the [5] converse true? Justify your answer.
 - (ii) Let G be an infinite group. Show that G has infinitely many proper subgroups.

[5]