B.A/B.Sc. 3rd Semester (Honours) Examination, 2021 (CBCS) Subject: Mathematics Course: BMH3SEC11 (Logic and Sets)

Time: 2 Hours

Full Marks: 40

The figures in the margin indicate full marks. Candidates are required to write their answers in their own words as far as practicable. [Notation and Symbols have their usual meaning]

Ansv	ver any	eight questions $8 \times 5 = 40$	
(1)		Let $S = \{2, 3, 4, 5, 6, 7, 8, 9, 10\}$. Define a relation R on S by: "a R b if and only if a is a divisor of b". Prove that R is a partial order on S. Find the maximal and minimal elements of the poset (S, R).	[2+3]
(2)	(i)	Let A, B, C be subsets of a universal set I and $A\Delta B = C$. Then prove that $A=B\Delta C$.	
	(ii)	Let ρ be an equivalence relation on a set S and a,b belong to S. If a is not related to b then prove that Cl(a) and Cl(b) are disjoint.	[3+2]
(3)		What is a contradiction statement in logic? Use truth table to determine whether the following statement is a tautology, or a contradiction or a contingent: $((P \rightarrow Q) \rightarrow P) \rightarrow P.$	[1+4]
(4)		What are logically equivalent statements? Check whether the following two logical statements are logically equivalent or not: I. $(P \land Q) \rightarrow R$ II. $P \rightarrow (Q \rightarrow R)$	[1+4]
(5)		Differentiate, with proper example, between a singular proposition and a general proposition. What are quantifiers? Explain the two different types of quantifiers with examples.	[2+3]
(6)	(i)	Write the contrapositive and converse statements of the following statement: "If n is a multiple of 12 then n is a multiple of 4".	
	(ii)	Rewrite the following logical formula using only NOT and AND logical operators: $(P \lor A) \rightarrow (Q \land X)$.	[3+2]
(7)		Use truth table to determine the validity or non-validity of the following argument: $P \rightarrow (Q \rightarrow R)$ $P \rightarrow Q$ Hence, $P \rightarrow R$.	[5]
(8)	(a)	Translate the following logical propositions:	
	(i)	The crop will be destroyed if there is a flood.	
	(ii)	A positive integer is prime only if it has no divisors other than 1 and itself.	
	(b)	If p: You have a flu, q: You miss the final examination, r: You pass the course, then express the following statements in plain English:	[2+3]

I. $\sim q \leftrightarrow r$ II. $(p \land q) \lor (\sim q \land r)$.

(9) Translate the following statements using quantifiers:

- (i) All fruits and vegetables are wholesome and delicious.
- (ii) Some medicines are dangerous only if taken in excessive amounts.
- (iii) Snakes are not all poisonous.
- (10) (a) Use quantifiers to say that " $\sqrt{3}$ is not a rational number".
 - (b) If A and B are true statements, X and Y are known to be false statements but the [2+3] truth values of P and Q are not known, then find the truth values of the following statements:
 - 1. $(P \land Q) \land (\sim A \lor X)$
 - 2. $(P \lor (Q \land A)) \land (\sim ((P \lor Q) \land (P \lor A)))$
 - 3. $Q \vee (\sim (P \land Q))$

B.A/B.Sc. 3rd Semester (Honours) Examination, 2021 (CBCS) Subject: Mathematics Course: BMH3SECI2 (Computer Graphics)

Time: 2 Hours

Full Marks: 40

The figures in the margin indicate full marks. Candidates are required to write their answers in their own words as far as practicable. [Notation and Symbols have their usual meaning]

Answer any eight questions $8 \times 5 = 4$			5 = 40
(1)		Discuss CMY color model in brief.	[5]
(2)		Discuss Random Scan in brief.	[5]
(3)		Briefly describe the working principle of an ink jet printer.	[5]
(4)		Discuss the mathematical foundation behind Bresenham's line drawing algorit	hm. [5]
(5)		Write a short note on graphics input devices.	[5]
(6)		Discuss the Bresenham's circle drawing algorithm.	[5]
(7)		Briefly discuss 4-connected and 8-connected neighbors in the context of filling	g. [5]
(8)	(i)	Discuss rotation of a rigid body in brief.	
	(ii)	What do you mean by pivot point?	[4+1]
(9)		Write a short note on two dimensional viewing.	[5]
(10)		Discuss Cohen-Sutherland line clipping algorithm in brief.	[5]

[5]

B.A/B.Sc. 3rd Semester (Honours) Examination, 2021 (CBCS) Subject: Mathematics Course: BMH3SEC13 (Object Oriented Programming in C++)

Time: 2 Hours

Full Marks: 40

The figures in the margin indicate full marks. Candidates are required to write their answers in their own words as far as practicable. [Notation and Symbols have their usual meaning]

Answer any eight questions $8 \times 5 = 4$			
(1)	(i)	What are the steps involved in executing a C++ program?	[2]
	(ii)	What are linker errors? Explain them with examples.	[3]
(2)	(i)	Explain the use of 'goto' statement with example.	[3]
(2)	(ii)	What are local variables? Give example.	[2]
(3)		Write the differences between structure and class with examples.	[5]
(4)	(i)	Explain the use of logical "!" operator.	[2]
	(ii)	Write a C++ program to sort the given numbers in ascending order.	[3]
(5)		What do you mean by the conditional execution? Differentiate between sequential	[2+3]
		execution and conditional execution.	
(6)		Explain the use of inline function with an example.	[5]
(7)		Write a program to find the roots of the quadratic equation $a x^2 + b x + c = 0$ for	[5]
		the given values of <i>a</i> , <i>b</i> and <i>c</i> .	
(8)		What is operator overloading? Write the differences between overloading a unitary	[2+3]
		operator and a binary operator.	
(9)	(i)	What is a class template? Explain its syntax.	[2+1]
	(ii)	What is function template?	[2]
(10)		Explain the exception handling mechanism with example.	[5]