B.A/B.Sc 6th Semester (Honours) Examination, 2020 (CBCS) Subject: Mathematics Course: BMH6DSE31 (Mathematical Modelling)

Time: 3 Hours

Full Marks: 60

The figures in the margin indicate full marks. Candidates are required to write their answers in their own words as far as practicable. [Notation and Symbols have their usual meaning]

- 1. Answer any six questions from the following: $6 \times 5=30$
 - (a) Explain the concept of Lyapunov stability of the equilibrium state of the differential equation $\frac{dx}{dt} = f(x)$. 5
 - (b) Investigate the asymptotic stability of the equilibrium points of the model equation $\frac{dx}{dt} = rx(1 - x/k).$ 5
 - (c) Derive the steady state difference equations for the queueing model $(M/M/1):(\infty/FCFS/\infty)$. 5
 - (d) A population is governed by the equation $\frac{dx}{dt} = x(e^{3-x} 1)$. Find all equilibria. 5
 - (e) A drug is administered every six hours. Let D(n) be the amount of the drug in the blood system at *n*th interval. The body eliminates a certain fraction *p* of the drug during each time interval. If the initial blood administered is D_0 , find D(n) and $\lim_{n\to\infty} D(n)$. 5
 - (f) Show that the equilibrium (x^*, y^*) with $x^* > 0, y^* > 0$ of the predator-prey model $\frac{dx}{dt} = x(1 - x/k) - \frac{axy}{x+A}$ $\frac{dy}{dt} = y\left(\frac{ax}{x+A} - \frac{aB}{A+B}\right)$

is unstable if k > A + 2B and asymptotically stable if B < k < A + 2B. (g) Discuss generalised least squares estimator. 5 (h) The growth of a population satisfies the following difference equation

$$x_{n+1} = \frac{kx_n}{b+x_n}, \ b, k > 0$$
.

Find the steady state (if any). If so, is that stable?

- 2. Answer any three questions from the following: $3 \times 10=30$
 - (a) (i) Discuss the method of maximum likelihood.
 - (ii) In a railway yard, goods trains arrive at a rate of 30 trains per day. Assuming that the inter-arrival time follows an exponential distribution and the service time distribution is also exponential with an average 36 minutes, calculate
 - (A) the average number of trains in the system.
 - (B) the average number of trains in the queue.
 - (C) the expected waiting time in the queue.
 - (D) the probability that the number of trains in the system exceeds 10. 6+4
 - (b) Discuss Malthus model equation of population growth $\frac{dN}{dt} = rN$. Interpret the equation when the sign of *r* is reversed.
 - (c) Obtain the maximum likelihood estimator of σ^2 where μ (known) and σ are mean and standard deviation of a normal population respectively. Show that this estimator is unbiased. 10
 - (d) Show that if arrivals in a queue are completely random, then the probability distribution of the number of arrivals in a fixed time interval follows Poisson distribution. 10
 - (e) (i) Explain the modelling of a system in discrete time.
 - (ii) Derive the mathematical model of traffic flows. 4+6

B.A/B.Sc 6th Semester (Honours) Examination, 2020 (CBCS) Subject: Mathematics Course: BMH6DSE32 (Industrial Mathematics)

Time: 3 Hours

Full Marks: 60

The figures in the margin indicate full marks. Candidates are required to write their answers in their own words as far as practicable. [Notation and Symbols have their usual meaning]

- 1. Answer any six questions from the following: $6 \times 5=30$
 - (a) What do you mean by Hounsfield unit of a tissue? What is the range of a typical clinical CT scan between air and bone?3+2
 - (b) Define Radon transform of a function with arguments t and θ . Explain with an example. 3+2
 - (c) Define unfiltered back projection for a function with arguments t and θ . 5
 - (d) If a continuous function f is equal to zero outside some disc and F is an integrable function of t and θ, then show that (Rf, F) = (f, R*F), where R and R* be the radon transformation and its adjoint respectively.
 - (e) Draw a curve showing the intensity of transmitted x-rays as a function of time following Beers law. Interpret the curve physically. 3+2
 - (f) Derive total spectral attenuation in terms of photoelectric absorption term, Compton scattering term, atomic number of the absorber, scattering attenuation constant and photoelectric constant.
 - (g) Write and explain the algorithm of CT scan. 3+2
 - (h) How can data be derived from a century old mummy using CT scan, keeping it intact? Write down the associated mathematical steps. 3+2
- 2. Answer any three questions from the following: $3 \times 10=30$
 - (a) Define p-wave, s-wave and Rayleigh wave kernels. Write a brief note on Optimal observables for multi-parameter seismic tomography. 10
 - (b) Show that the systematic rotation ω for tomographic experiments can be defined as

$$\begin{pmatrix} \omega_x \\ \omega_y \\ \omega_z \end{pmatrix} = \frac{1}{2} \begin{pmatrix} \partial_x \\ \partial_y \\ \partial_z \end{pmatrix} \times \begin{pmatrix} u_x \\ u_y \\ u_z \end{pmatrix} = \frac{1}{2} \begin{pmatrix} \partial_y u_z - \partial_z u_y \\ \partial_z u_x - \partial_x u_z \\ \partial_x u_y - \partial_y u_x \end{pmatrix}.$$

Hence define tilt. What are its physical significances? 10

(c)	Describe the evaluation of tomographic brain reconstruction techniques using she	pp-
	logan phantom imaging.	10
(d)	Set an example of back projection. Explain with graphs.	10
(e)	Establish the CT reconstruction formula.	10

B.A/B.Sc 6th Semester (Honours) Examination, 2020 (CBCS) Subject: Mathematics Course: BMH6 DSE33 (Group Theory-II)

Time: 3 Hours

subgroup of G.

Full Marks: 60

The figures in the margin indicate full marks. Candidates are required to write their answers in their own words as far as practicable. [Notation and Symbols have their usual meaning] 6x5=30 1. Answer any six questions from the following: (a) Show that S_3 cannot be written as internal direct product of two non-trivial subgroups. 5 5 (b) Prove that a group of order 45 is an Abelian group. 5 (c) Find the three 2-sylow subgroups of S_{3} . (d) Let G be a group of order 187. Prove that any subgroup of order 17 in G must be normal. 5 (e) Let G be a group which acts on a set X. For $x \in X$, define stabilizer G_x of x and show that it forms a subgroup of G. 5 5 (f) Prove that the centre of S_n is trivial for n>2. (g) Prove that any group of order 15 is cyclic. 5 (h) Let O(2) be the group of 2×2 real orthogonal matrices and \mathbb{R}^2 be the Euclidean plane. Define a group action on the plane \mathbb{R}^2 and find its orbit. 5 2. Answer any three questions from the following: 3x10=30(a) (i) Let G be a group of order pq where p and q are distinct primes p > q and q does not divide p-1. Then prove that G is cyclic. (ii) Let G be a group and f be an automorphism of G. Show that the set $\{a \in G : f(a) = a\}$ forms a subgroup of G. 7 + 3(b) (i) Let G be a finite group and $a \in G$ be such that o(a) > 1. Suppose that G has exactly two conjugacy classes. Prove that |G| = 2. (ii) Let G be a group of order p^{α} m where p is a prime, α and m are positive integers, and p and m are relatively prime. Prove that G has a subgroup of order p^{α} . 5+5(c) (i) Let H and K be two subgroups of a group G. Show that $Z(H \times K) = Z(H) \times Z(K)$. (ii) Prove that for any group G, the set $\{a \in G : f(a) = a, \forall f \in Aut(G)\}$ forms a normal

(d) (i) Prove that the direct product of two finite cyclic groups of order m and n is again a cyclic group if and only if g.c.d(m,n) = 1.

(ii) Prove that $Aut (\mathbb{Z}_2 \times \mathbb{Z}_3) = Aut(\mathbb{Z}_2) \times Aut(\mathbb{Z}_3).$ 6+4

- (e) (i) Let *H* be a subgroup of a finite group *G* and suppose *H* acts on *G* under $*: H \times G \to G$ such that *(h, g) = hg. Prove that o(H)|o(G).
 - (ii) Prove that there are no simple groups of order 63. 5+5

6+4